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Abstract

Analogical reasoning is frequently used in acquisition of mathematical concepts.

Concrete representations used to teach mathematics are essentially analogs of

mathematical concepts, and it is argued that analogies enter into mathematical

concept acquisition in numerous other ways as well. According to Gentner's

theory analogies entail a structure-preserving mapping from a base or source to the

target. For example, in teaching mathematics using concrete aids, the concrete aid

would be the source, and the concept to be taught the target. Although concrete

aids can provide valuable assistance to concept acquisition, their oft-noted failure

to provide the anticipated benefits has been a source of some puzzlement. It is

suggested that the reason may be the processing loads imposed by structure

mapping. Some representative mathematical concepts will be examined, together

with typical concrete representations, and the nature of the processing loads

analysed. These loads can be reduced by recoding concepts into more abstract

form, but it is argued that structure mapping plays a role in abstraction also.

Analysis of this process provides insights into sources of difficulty, and

recommendations are made for improving the efficiency of instruction.
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Value and Limitations of Analogs in Teaching Mathematics

Young children are confronted regularly by mathematical

representations. Some of these are concrete analogs specifically designed for

pedagogical purposes, such as the Cuisenaire rods or the multibase arithmetic

blocks, while others are representations inherent in the discipline of mathematics,

such as number lines and symbols. The purpose of this paper is to consider some

of the psychological processes entailed in using mathematical representations, in

order to explore their role in the development of new concepts.

The theory we will use for this purpose is part of a general account of

cognitive development that is outlined more fully elsewhere (Halford, in press). It

argues that there are two basic types of mechanisms in cognitive development. The

first are essentially learning mechanisms, which lead to the gradual adjustment of

mental models of the world through experience. These mechanisms are not

fundamentally different from those that operate in other species. These

mechanisms entail strengthening through experience, which applies to both

declarative knowledge (mental models), and to procedural knowledge. When

applied to declarative knowledge it means that when a mental model correctly

predicts the environment it is strengthened, and when it does not it is weakened. A

similar principle applies to acquisition of procedural knowledge; it is strengthened

when successful, and weakened when unsuccessful. Learning mechanisms of this

kind can account for a wide range of acquisitions (Holyoak, Koh & Nisbett, in

press; Holland, Holyoak, Nisbett & Thagard, 1986).

4
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The second type of mechanism is concerned with recognition of

correspondence between structures. It is involved in such processes as recognition

of analogies, and with the selection and use of representations. It is argued that

human beings have limited capacity to see correspondence between structures, but

have much greater capacity to learn. It is suggested that this explains many

cognitive developmental anomalies, such as ability to perform a task in one

context but not in another. In this paper we are primarily concerned with ability to

see correspondence between structures, and the effect that our limited ability to do

this has on acquisition of mathematics. The argument is presented by reference to

a few illustrative examples, but it can be applied to wide range of subject matter

(Halford, in press).

Analogical reasoning, which is increasingly being seen as

fundamentally important to human cognition, entails recognition of

correspondence between one structure and an Cher. Therefore we will begin by

considering the theory of analogies, then we will broaden the issue to consider

representations in general. According to Gentner (1983) an analogy consists of a

mapping from one structure, called the source or base, to another structure, called

the target. In the simple analogy "Man is to house as dog is to kennel" (see Figure

1), "Man is to house" is the source, and "dog is to kennel" is the target. Man is

mapped into dog and house into kennel, and the relation "lives in" between man

and house corresponds to the relation "lives in" between dog and kennel.
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An important property of the structure mapping process in analogies

is that it is selective. Attributes are not normally mapped at all, so that for example

the attribute "wears clothes" associated with man is not mapped into, or attributed

to, dog. Relations are also mapped selectively. In the present example, only one

relation "lives in" is mapped, and other relations in the source such as "has

mortgage on", or "repairs at weekends" are not mapped into the target. This means

the mapping process selects those features of each structure that it shares with the

other structure. As we will see, this has important implications for the formation of

abstractions, because it means that structure mapping selects the features that are

general to a particular class of structures, and eliminates the features that are

specific to individual structures.

The theory of analogies is very clost to the theory of representations.

A cognitive representation consists of a mental model that is in correspondence to

the segment of the environment that is represented (Halford & Wilson, 1980;

Palmer, 1978). A cognitive representation is a mapping from a cognitive structure

to an environmental structure. An analogy is a mapping from one mental structure

to another (Holland, Holyoak, Nisbett & Thagard, 1986). Thus structure mapping

theory can handle both analogies and representations.

Applying Gentner's structure mapping theory to mathematics, the

concrete representation is the source and the concept to be taught is the target. The

value of the concrete representation is that it mirrors the structure of the concept

and the child can use the structure of the representation to construct a mental

C
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model of the concept.

It has been noted increasingly in recent literature in mathematics

education that concrete representations often fail to produce the expected positive

outcomes. Lesh, Behr and Post (1987) note that "concrete problems often produce

lower success rates than comparable word problem.. " (p. 56). Dufour-Janvier,

Bednarz, and Belanger (1987) also note the ".. . negative consequences that can be

caused by the use of representations prematurely or in an inappropriate context. In

fact this leads the child to develop erroneous conceptions that will subsequently

become obstacles to learning." (p. 118).

There seems to be some mystification as to why concrete analogs

sometimes aid and sometimes hinder acquisition of mathematics. We wish to

propose that one reason why concrete analogs sometimes fail to live up to

expectations is because of the processing load entailed in mapping a concept into

an analog. Previous research by Halford and his collaborators (Halford, Bain &

Maybery, 1986; Maybery, Bain & Halford, 1986) has shown that structure

mapping imposes a processing load, the size of which depends on the structural

complexity of the concepts.

Halford (1987, on contract) has defined four structure mapping levels

as illustrated in Figure 2, the processing demands of which are known:

Element mappings. An element in one structure is mapped into an element in the

other, on the basis of similarity or convention; e.g. an image or word representing

an object or event.
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Relational mappings entail mapping 2 elements with a relation between them; e.g.

2 sticks of different lengths to represent the fact that a man is larger than a boy.

The mapping is validated by the similarity of the relation between the sticks to the

relation between man and boy, and is independent of element similarity or

convention. The man-house/dog-kennel analogy is a relational mapping, because it

is validated by a similar relation in source and target.

System mappings are validated by structural correspondence, independent of

similarity or convention. An example would be the representation of Tom > Dick

> Harry by ordering the elements from left to right. Tom, Dick, Harry are mapped

to left, middle, right respectively, and the relation ">" is mapped to "left-or.

Mappings must be unique, and if a relation R in structure 1 is mapped into a

relation R' in structure 2, the arguments of R must be mapped into the arguments

of R'.

Multiple system-mappings are similar to system mappings except that they depend

on a composition of structures that have three elements as arguments.

Processing loads.

The load imposed by structure mapping depends on the level of

structure being mapped, and can be quantified by the information required to

define that structure. Elements can be defined by c,:te item of information (e.g.

label), binary relations by two items, systems of binary relations by three items,

and multiple systems by four items (Halford, 1987; Halford & Wilson, 1980) The
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mental process which checks validity of mappings must transmit sets of items no

smaller than these values from the representation of one structure to the

representation of another. The metric is similar to that used by Leeuwenberg

(1969), and Simon (1972); the complexity of a pattern or structure is equivalent to

its dimensionality, i.e. the number of independent signals that define it. This means

that the level of a mapping depends on the amount of information that must be

processed in parallel to validate a mapping, not on the total amount of information

in a structure.

The 4 mapping rules increase in abstractness, but at the cost of higher

processing loads. This effect has been empirically confirmed using dual-task load

indicators ( Halford, Maybery & Bain, 1986; Maybery, Bain & Halford, 1986).

Also, our research has shown that children become capable of using progressively

higher rules with age ( Halford 1982, 1987, on contract; Halford & Wilson, 1980).

This implies that the level of structure mapping that children can use

will be a function of processing capacity. The view that there is a maturationally-

determined upper limit to cognitive processes has been a very unpopuin one, at

least partly because it is seen as having gloomy consequences for education

(Carey, 1985). This is not a valid reason for rejecting the hypothesis however, for

two reasons. First, our desire to accelerate cognitive development should not bias

our acceptance of the scientific evidence. One consequence of such a bias would

be that studies indicating children's inability to perform a given task would be

subjected to much more rigorous scrutiny than studies indicating successful
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performance. There are in fact some well-known studies in the literature where

authors have been permitted to report chance-level results as positive results

(McGarrigle, Grieve & Hughes, 1978; Siegel, McCabe, Brand & Matthews, 1978),

apparently in pursuit of the aim of showing that children can succeed on certain

tasks. This question is discussed in more detail elsewhere (Halford, 1989).

Second, the maturation hypothesis does not have uniformly gloomy implications,

because most children are performing below their theoretical limit on some tasks,

and more refined task analysis can result in very substantial improvements. Thus

the maturation hypothesis is in no way incompatible with the goal of accelerating

cognitive development. It simply implies that performance will be a function of

processing capacity as well as experience. Therefore we will examine the capacity

question next.

Capacity

The information required to validate structure mapping rules raises the

question of the amount of information that can be processed in parallel. Our theory

links work on chunking originating with Miller (1956) to current parallel

distributed processing models (Rumelhart & McClelland, 1986). In the latter

information is represented as a set of activation values over a large set of units.

Each pattern of activations (module) can represent a large amount of information,

but its output is restricted to one concept at a time. When this limitation is

combined with a restriction on the number of pattern of activations that can be

transmitted from one set of modules :o another (Schneider & Detweiler, 1987) it
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provides an interesting theoretical basis for the observation that chunks can be of

any size, yet only about four can be active simultaneously (Broadbent, 1975;

Fisher, 1984; Halford, Maybery & Bain, 1988). A pattern of activations in one

module can represent a chunk (information unit of arbitrary size) and since each

pattern of activations can assume a range of values independent of other patterns,

each pattern of activations represents a different dimension.

Schneider & Detweiler (1987) propose a multi-capacity module in

which there are a number of regions, representing separate functions such as

speech, vision, motor processing etc. Each region contains up to four modules.

They propose that working memory capacity can be increased by utilizing more

than one region for difficult tasks. However, as mentioned above, only 4 patterns

of activation can be transmitted from one region to another. This implies that only

4 patterns of activation can be p.-ocessed in parallel. This in turn means that four-

dimensional structures are the most complex that can be processed in parallel. This

theory has been discussed in more detail by Halford (in press).

There is a link between the amount of information that can be

processed in parallel and the level of structure mapping that can be achieved.

Research indicating that adults process four chunks or dimensions in parallel

implies that structures equivalent to multiple system mappings would be the most

complex that can be processed in parallel. If children can process less dimensions

in parallel, they would be restricted to lower level mappings, which would explain

the difficulty they have with certain concepts (Halford, 1987).



11

Previous research (Ha lford, 1987) has shown that children can master

element mappings at one year, relational mappings at two years, system mappings

at five years, and multiple system mappings at 11 years (median ages). This has

been used to explain the typical age of attainment of a variety of concepts. Table 1

shows representative concepts belonging to each level.

Segmentation and conceptual chunking

There are of course many concepts that contain more than four

dimensions, but the empirical work discussed above suggests that only four

dimensions are processed in parallel, even by adults. How then are more complex

problems processed? The model proposes that problems too complex to be

processed in parallel are handled either by segmentation or chunking.

Segmentation entails decomposing the problem into components or segments, and

processing these serially. Thus there is parallel processing within segments, but

serial processing between segments. There is a limit on segmentation because

some problems cannot be decomposed. For example, the minimum information in

an addition problem is two addends. The answer to the sum "add 3" cannot Le

defined; we must know to what number 3 is added. The minimum information

required to define arithmetic addition is a structure of the form "a,b --> c" (e.g. 2,3

--> 5). Binary operations cannot be defined on sets of less than three elements, and

therefore are irreducibly three-dimensional concepts.
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Conceptual chunking reduces processing loads by recoding multiple

dimensions into a single dimension, or at least into in less dimensions than the

original. Conceptual chunks are similar to mnemonic chunks in that a number of

formerly separate items of information are recoded as a single item, but there is

more emphasis on structure. A good example of a conceptual chunk would be

speed, defined by the dimensions distance and time, but it can be recoiled as a

single dimension, e.g. position of a pointer on a dial.

Once multiple dimensions are recoded as a single dimension, that

dimension occupies only one chunk or module, and it can then be combined with

up to three other chunks. This does not mean that processing limitations can be

eliminated by recoding all concepts as a single chunk because a single dimensional

representation only includes one combination. Alternate combinations become

inaccessible, unless a return is made to the original dimensions, which entails the

original processing load. Thus there tends to be a tradeoff between efficiency and

flexibility. The other limitation is that conceptual chunking, like mnemonic

chunking, is only possible with constant mappings of components into chunks.

Nevertheless conceptual chunking is very useful in reducing processing loads, and

permits us to master progressively more complex concepts. In a later section we

will develop this argument further with reference to coding numbers in different

bases.

Iti
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The fact that processing loads can be reduced by segmentation and

conceptual chunking does not make predictions about processing loads at each

level of structural complexity untestable. It does mean however that hypotheses

about the amount of information that can be processed in parallel must be tested

using tasks that preclude segmentation or conceptual chunking. Segmentation can

be precluded by devising tasks in which the dimensions that define the structure

interact, so they cannot be processed serially. Conceptual chunking can be

precluded by using tasks that require new structures to be generated, because

conceptual structures can only exist if there has been previous experience with that

structure. These methods have been used in our previous research on this topic

(Halford & Wilson, 1980; Halford, Maybery and Bain, 1986; Maybery, Bain &

Halford, 1986).

Analogs in mathematics

Concrete analogs have been especially popular in teaching

mathematics, as the multitude of commercially available mathematical games

attests. In fact the construction of concrete analogs for mathematical concepts has

reached great heights of ingenuity, as is evidenced in the work of Dienes 0. Some

of the reasons why analogs are useful in learning are:

1. They reduce the amount of learning effort, and serve as memory aids.

3. They can provide a means of verifying the truth of what is learned.
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3. They can increase flexibility of thinking.

4. They can facilitate retrieval of information from memory.

5. They can mediate transfer between tasks and situations.

F. They can indirectly (and, perhaps, paradoxically) facilitate transition to higher

levels of abstraction.

7. They can be used generatively to predict unknown facts.

On the other hand there are some potential disadvantages, including:

1. Structure-mapping imposes a processing load (discussed above),

and this load can actually make it more difficult to understand a concept.

2. A poor analog can generate incorrect information.

3. If an analog is not fully integrated, and is not well mapped into the

material to be learned or remembered, it can actually increase the learning or

memory load.

We will explain these points by first using as an example the simple

mathematical analogs in Figure 3. A popular way to teach simple addition facts is

by using small sets of objects, as in Dienes multibase arithmetic blocks, or simply

crosses on paper, to represent small numbers. Figure 3A shows such an analog in

structure-mapping format, with a set of one object mapped into the numeral 1, a

set of two objects mapped into the numeral 2, and so on. The use of the same

analog to represent a simple arithmetic relationship, 2 + 3 = 5, is shown in Figure
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3B. Collis (1978) has shown how this analog can be used to represent some quite

sophisticated mathematical notions, including addition and multiplication,

commutativity, operations on ratios, and proportion. We will apply structure

mapping them), to assessing this analog.

First, notice that in Figure 3A the mapping from sets to numerals is

clear and easily verified. It is easy to recognize, by subitizing or counting, how

many elements each set contains. In Figure 3B, the mapping of the numerals 2,3,5

into their respective sets is also clear and easily verified. The relation between the

two addend sets and the sum set is also clear - the sum set includes all elements of

the two addend sets, which have no common elements (are disjoint). This means

that the structure of the base is clear and readily accessible (high base specificity in

Gentner's terms). If we arrange sets in order of in Teasing magnitude as shown in

Figure 3A, it is easy to see that each set contnirs one more element than its

predecessor. This is one of many useful relationships that are contained in the

analog, and which are readily available for mapping into the target.

Contrast this with another analog of elementary number facts, the

Cuisenaire rods. In this case it is not so clear which rod should be mapped into

each numeral. The longer rods are mapped into the larger nu:nerals, but it is

difficult to be sure precisely which numeral is represented by a rod of a given

length. The rods are distinctive colors, to facilitate this differentiation, but as

Figure 3C shows, the colors complicate the mapping process. There is a two-stage

map from rod to color to numeral. The colors are arbitrary to some extent, su the
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mapping from rod to color, and the mapping from color to numeral, must be rote

learned. Learning this Itbitrary double-mapping greatly increases the load on the

children. The relationships in the base are not as clear as in the sets analog. For

example, it is not as clear that each rod represents one more unit than its

predecessor.

The use of the Cuisenaire analog to represent 2 + 3 = 5 is shown in

Figure 3D. Because of the two-stage mapping rod-color-numeral, which parallels

the rod-numeral mapping, we can see that the structure-mapping is much more

complex than the corresponding mapping in Figure 3B, based on sets. A

structure-mapping analysis therefore predicts that the set analog would be more

efficient than the colored rods analog. This analysis is intended to illustrate the

application of structure-mapping theory to mental models of mathematics.

The sets analog also exemplifies the second advantage listed above,

because it permits verification of the truth of what is learned. As Figure 3B

shows, the sets analog provides a concrete model verifying that 2 + 3 = 5.

Furthermore, it is a model which a child can learn to construct at any time so as to

verify this relationship. The third advantage, facilitation of memory retrieval

occurs because an analog can provide an additional retrieval cue. Siegler and

Shrager (1984) have shown how this can occur with another popular small number

analog, use of fingers. Even when children are able to retrieve number facts from

memory, they might use fingers as an "elaborated representation", not to determine

the answer by counting fingers, but as an additional retrieval cue.
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The sets analog illustrates how flexibility of thinking can be increased.

The analog in Figure 3B was constructed to show that 2 + 3 = 5, but it can be used

equally well to verify that 3 + 2 = 5 (the commutativity property), and even that 5 -

3 = 2, and 5 2 = 3. Many good analogs can be accessed in several different ways,

which makes it easy to examine a concept from a number of angles.

One reason why analogs facilitate transition to higher levels of

abstraction is that they promote learning of integrated structures. For example, the

analog in Figure 3A would facilitate the learning of numbers as an ordered set,

whereas analogs such as that in Figure 3B would facilitate the learning of

integrated sets of relationships such as 1 + 1 = 2, 1 + 2 = 3,1 + 3 = 4, . . 3 + 4 =

7, 3 + 5 = 8, etc. Structure-mappings can be made best when the base structure is

well-learned (the property which Gentner, 1982 calls "base specificity"). When

learning arithmetic using a concrete analog, the concrete material is the source or

base and the arithmetic facts are the target. When the transition is made to a

higher level of abstraction, the arithmetic becomes the base, and the algebraic

relationships which mirror the arithmetic is the target. This is discussed by

Halford (on contract, Chapter 8), and is also developed later in this paper. The

better the arithmetic facts are learned, the better will be the base, and the better

will be the structure-mapping used to learn algebra.

Complexity of concrete analogs
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In this section we will analyze the complexity of some concrete

analogs in terms of levels of structure mapping outlined earlier. Recognition of

relations between numbers (or sets) would be a relational mapping, and

recognition of binary operations (addition, multiplication, and their inverses,

subtraction and division) would be system mappings. Laws relating to single

operations, such as that of commutativity, also entail system mappings. Concepts

based on compositions of binary operations such as the distributive property

a(b+c) = ab +ac entail multiple system mappings.

Simple analogs for the addition operation, 2 + 3 = 5 and for the

relation 7 < 8 are shown as structure mappings in Figures 3B and 3C respectively.

According to Halford's theory of levels, the mapping in Figure 3B is a system

mapping, and that in Figure 3C is a relational mapping. The addition operation

should impose a higher processing load than recognition of relations.

For young children the verification of arithmetic facts probably

depends on reference to a concrete example, based on small sets as in Figure 3

(fingers make admirable sets up to 10), or on a number line. If the structure

mapping is too difficult they will be unable to make this verification, and to that

extent their understanding will be impaired. Because arithmetic operations entail

system mappings whereas understanding relations between integers or sets entails

a relational mapping, it follows that, other things being equal, the former should be

more difficult and should be understood later.

5
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We will now apply structure mapping Lieoty to some more complex

arithmetic concepts taught in schools. The basic idea of base-10 Multi-base

Arithmetic Blocks (Dienes, ) is shown in Figure 4. With base-10 blocks, units are

represented by small square blocks, tens are represented by blocks that are as long

as 10 unit blocks (longs), and hundreds are represented by square blocks equal in

area to 10 tens blocks (flats). The area relations between the blocks reflect the

magnitude relations between quantities represented.

Resnick and Omanson (1984) found that the children could write

numerals to represent numbers, correctly using the place-value notation, and could

construct valid representations using the concrete analogs, Dienes blocks or coins.

They could also validly represent recompositions, such as changing 34 from 3 tens

and 4 units to 2 tens and 14 units. However they were not able relate this

understanding to the decomposition procedures in addition and subtraction.

Furthermore an attempt to train the children to map their concrete representations

into the arithmetic procedures was not particularly successful. We can begin to

understand why children would have difficulty mapping these concrete

representtions into decomposition procedures, and why relatively brief mapping

training might not remedy the problem, if we define the mappings involved more

completely.

Figure 5 shows the structure mapping for a simple trade operation,

where 324 is changed to 200 plus 110 plus 14. In the concrete representation, 324

is represented as 300 hundred blocks, two ten blocks and four unit blocks. The

20
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first point to notice about this mental model is that it really entails a two-stage

vertical mapping. The three hundreds blocks are first mapped into the quantity

300, but this in turn has to be mapped into the 3 digit in the hundreds column in

accordance with the place-value notation. That is we have mappings from

concrete analog to quantity to notation.

Moving horizontally we have a quantity conserving change in which

the original representation is replaced by two hundreds blocks, 11 tens blocks, and

14 units blocks. To appreciate the value of the concrete representation, the child

must recognize that this is a quantity conserving change. This is not easy to see

because we have to sum 300 + 20 + 4 and recognize that it is equal to 200 + 110 +

14.

On the right hand side we again have a two-stage mapping from

concrete analog to quantity to place-value notation. The value of the concrete

analog is lost unless it is realized that there is a quantity conserving change at all

three levels. All in all, this is a very complex structure mapping, but it is only part

of the mapping that is required to understand the decomposition procedure in

subtraction, as we will soon see.

The structure mapping required to show how 324 minus 179 can be

understood in terms of a concrete analog is shown in Figure 6. The decomposition

procedure is illustrated in the left side of the figure, as in Figure 8.10. The

subtrahend, 179, is shown as concrete analog, as quantities 100 plus 70 plus 9, and

in place value notation, 179. The resulting quantity, 145 is shown in the same
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way.

Note that the structure mapping diagram is designed to show relations

between elements of the representation, corresponding relations between the things

represented, and the mapping from one to the other. It is not designed to show the

sequence of steps in the subtraction procedure. Consequently, the decomposition

procedure is shown to the left of subtraction, but this is not intended to convey that

one occurs before the other. Structure mapping is a way of analyzing the relations

that are inherent in the structure of a concept and revealing their complexity. It is

not a substitute for a process model.

To realize how the concrete analog justifies the subtraction procedure the child

must recognize several sets of relationships;

1. The vertical mappings from each concrete display to the quantity represented,

and then to the place value notation.

2. There is a quantity conserving change at all three levels from the initial

representation, 324, to the representation with decomposition, 200 plus 110 plus

14.

3. The subtraction process yields the same relationships at all three levels. For

example, at the top level, when we remove a hurdreds block from a set of 2

hundreds blocks, the result is 1 hundreds block. Similarly, at the next level, when

we subtract 100 from 200, the result is 100. Similarly again, at the lowest level,

2 2
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subtracting a 1 in the hundreds column from a 2 in the hundreds column yields a 1

in the hundreds column. Thus the same relationships obtain at each of the three

levels. This is also true for tens and units. It is the fact that the same set of

relations hold at all three levels that provides the justification for the arithmetic

procedure. The problem is that children will not recognize the justification unless

they can see this complex set of relationships. If the justification is not

understood, the concrete analogs may be worse than useless, because they are

extra things to learn, they take time to manipulate, and cause distraction.

Taken over all, there is a very complex set of relationships. It is really

a composite of numerous lower level mappings. It entails more information than

even an adult could process in parallel if the capacity theory outlined above is

correct, so no adults could make the complete mapping in a single step. For both

adults vnd children it would have to be learned, component by component. When

we see the complexity of the mapping task, it becomes obvious why processing

loads entailed in making the mapping could be impossibly high. The already

complex mapping is further complicated by the fact that in this structure mapping

there are two levels of representation, the concrete level and the quantity level.

There is also a mapping from one to the other so that, for instance, 3 hundreds

blocks represents the quantity 300, which is then mapped into the numeral 3 in the

hundreds column. As we have seen, structure mapping imposes a processing load,

and if this load is excessive it will constitute a barrier to understanding. Some way

must therefore be found to reduce the processing load so the concrete analog can
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be useful.

There are at least two ways that the processing load can be reduced.

One is by prelearning the mappings. For example children can be taught that a

hundreds block (fiat) represents hundreds, and relates to the hundreds column.

Knowing this so it can be retrieved automatically from memory removes the

processing load entailed in making the mapping. Much practice is requir-d

however to make this retrieval automatic. The other way to reduce processing

loads is to recode the relationships into more abstract form. As Biggs (1968) has

noted, the Multi-base Arithmetic Blocks were intended to teach abstract concepts

such as power and place value. The problem however is that abstraction is not a

process that can be taken for granted, but must itself be explained. Therefore we

will consider how abstractions might arise from experience with concrete analogs

in the next section, and we can assess the processing loads this entails.

Structure mapping and abstraction

The processes by which abstractions are developed out of experience

is a major problem at the very cutting edge of our discipline. For example Holland,

Holyoak, Nisbett and Thagard (1986) present a sophisticated model of induction,

the process by which general rules are acquired through experience with specific

instances. Another major problem is to explain how people progress from

representing constants to representing variables. This, and the recoding issue

generally, are discussed by Clark (unpublished), Karmiloff-Smith (1987), and

Smolensky (1988). We will not summarize this issue here, except to say that the
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problem of how abstractions develop is far from solved. However we will try to

indicate how - sapping from one structure to another might contribute to the

development of abstraction.

We will develop the argument by reference to the distributive law of

multiplication with respect to addition; a(b + c) = (a x b) + (a x c). We would

propose that children, and most adults, understand this rule primarily in terms of

specific examples. That is, they do not understand the rationale that is provided by

pure mathematicians, but have a more pragmatic, experience-based rationale. This

hypothesis is consistent with the virtually ubiquitous finding that natural human

reasoning is not based on formal principles of general validity, but on pragmatic

schemas that have some degree of generality, but are not universal (Cheng &

Holyoak, 1985; Halford, in press; Shaklee, 1979).

A child, or for that matter an adult, might recognize the validity of the

distributive law by testing it against a specific example. They might note that, for

instance, 3(2 + 1) = (3 x 2) + (3 x 1). Understanding the validity of the law means

recognizing the correspondence between the law and one or more specific

examples. This is tantamount to recognition of structural correspondence; that is, it

amounts to recognizing the structural correspondence between the example and the

law.

Structure mapping analyses are a conceptual tool for expressing

structural correspondences. The process of recognizing the correspondence

between the law and an example can be expressed by the structure mapping
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diagram in Figure 70. In terms of analogy theory, the example becomes the source

(shown in the top line of the mapping) and the law is the target (in the bottom line

of the mapping). The fact that the law can be mapped into a number of examples,

and corresponds to those examples, is the major reason for regarding the rule as

justified. It is therefore understood by analogy, but it is analogy between a

general rule and one or more examples of that rule. This might not be a

conventional way to use the term analogy, but the structure mapping processes are

those of analogies.

The only additional step that is likely to be made is to check for

counter-examples; the rule is accepted as valid if no example can be retrieved that

does not fit it. To illustrate, we might recognize that commutativity of subtraction,

(a - b) = (b - a), is not valid because (3 - 2) =i (2 - 3). That is, we can produce a

counter-example, or a case that cannot be mapped into the rule. As Johnson-Laird

(1983) has pointed out, seeking counter-examples is one of the more sophisticated

aspects of natural reasoning processes.

The process of learning the general algebraic rule is partly a matter of

replacing constants by variables. That is, the specific example 3(2 + 1) = (3 x 2) +

(3 x 1) is replaced by a(b + c) = (a x b) = (a x c), in which each constant is

replaced by a variable. But, as we said before, this has proved to be one of the

most difficult processes for cognitive psychologists to explain, and we cannot take

it for granted. We suggest however that structure mapping can play a role in this

process. This can be demonstrated in a very general sense, and also in terms of
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specific examples.

At the general level, structure mapping means that specific examples

of structures can be mapped into one another. This is illustrated in Figure 7E,

where two specific instances of the distributive law are mapped into one another.

The mapping is valid because the two structures are isomorphic, and mapped in

such a way that they correspond. Correspondence is defined by consistency; two

structures correspond 'at each element in one structure is mapped into one and only

one element in the other structure, and if relations between elements in one

structure correspond to relations between the image elements in the other strucure.

More generally, a predicate P in structure A corresponds to a predicate P' in

strucure B if and only if the arguments of P are mapped into the arguments of P'

and vice verse (Ha lford, in press).

When two structures are mapped into one another, the structure itself

remains constant, but the elements vary. As we see in Figure 7E, there are two

identical structures, but the specific elements are different. Therefore structure

mappings can simulate variables, because they permit a structure to be maintained

while the instantiation of each part of it changes. A mapping such as Figure 7E

does not literally contain variables, but it can certainly simulate the use of

variables in at least some contexts, and can be a step towards the acquisition of

variables, as we will see. Furthermore structure mapping processes are understood

at quite a deep level. Holyoak and Thagard (in press) have produced a computer

simulation of structure mapping based on parallel constraint satisfaction
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mechanisms which explains structure mapping in terms of the very basic processes

of excitation and inhibition. Whereas abstraction per se remains something of a

mystery to cognitive science, and is therefore a poor basis for explanation,

structure mapping is much better understood, and provides a much more solid

foundation on which to build explanations.

Another reason why structure mappings aid the abstraction process is

that only thc common aspects of the structures tend to be mapped, and surplus

attributes and relations are deleted. When discussing analogy theory earlier we

pointed out that in die tnad-house:dog-kennel analogy attributes of man are not

mapped into dog, and only certain relations between man and t .4re mapped

into dog-kennel. Thus structure mapping is inherently selective in a way which is

useful in creation of abstractions.

Now let us trace through a possible sequence of steps that might be

entailed in acquiring the distributive law through structure mapping. Some

hypothetical steps are shown in Figure 7. As mentioned earlier, we propose that

the law is understood by recognizing the correspondence that it has to some

specific examples. But there are knowledge prerequisites for this understanding,

and these are briefly sketched in Figure 7.

In Figure 7A, we represent the child's Knowledge that 3(2 + I) = 9.

This knowledge must be acquired through calculation, and the child must learn to

interpret and manipulate parentheses and operation symbols in arithmetic

expressions. There is therefore procedural knowledge that must be acquired. Our
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concern here however is primarily to express the conceptual knowledge that

underlies the procedural knowledge. We can express this conceptual knowledge

that 3(2 + 1) = 9 corresponds to 3 x 3 = 9; i.e. process the operation in parentheses,

which yields 3, then process the operation represented by the numeral which

precedes thk: parentheses. This knowledge that 3(2 + 1) = 9 corresponds to 3 x 3 =

9 can, like other structural correspondences, be repesented as a structure mapping,

as shown in Figure 7A. Note that, once again, structure mapping is a conceptual

tool for analysing structural correspondences, and does not represent a process

model as such.

The next step is for the child to recognize that (3 x 2) + (3 x 1) = 9

corresponds to 6 + 3 = 9. This is represented as a structure mapping in Figure 7B.

This is essentially similar to the process in Figure 7B. It is a major step from there

however to recognize that 3(2 + 1) = (3 x 2) + (3 x 1). Understanding this depends

on recognizing that it corresponds to 3 x 3 = 6 + 3, which is shown as a structure

mapping in Figure 7C. The child already knows that 3 x 3 = 9 = 6 + 3, because of

previous experiences of the kind shown in Figure 7A and 7B. Therefore the known

relationship, 3 x 3 = 6 + 3 can serve as a mental model that enables the child to

understand 3(2 + 1) = (3 x 2) + (3 x 1). For this understanding to occur, the child

must recognize the structural correspondence between the kinds of expressions, as

shown in Figure 7C.
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The next step is probably to acquire further examples of this

correspondence. Another example is shown in Figure 7D. Furthermore Figure 7E

expresses the correspondence between a new example and the original example.

The idea here is that a child might adopt one prototypical example and compare it

with other examples, recognizing the correspondence between the prototype and

numerous other examples. The prototype then becomes a kind of template for the

general rule. A further example of this process is shown in Figure 7F.

The final step occurs when the child recognizes the correspondence

between the prototype arithmetic example and the general rule. An additional

process is required here, because the child must know that letters can be used to

represent unknown numbers. This fact would normally be taught in other ways,

such as showing children how to drawn a container representing an unknown

number of objects, then teaching them how to write a letter to represent the

unknown number of objects. Assuming the child has already learned to represent

unknown numbers by letters, the step in Figure 7G can be taken once the

correspondence the algebraic law and the arithmetic example can be recognized.

The fact that letters can represent unknown numbers is a component

of the domain knowledge that is required to learn the algebraic law, but it does not

explain how the algebraic rule is understood. The point that we have wanted to

illustrate through this extended example is that understanding depends on

recognition of the correspondence between the algebraic rule and one or more

reference examples. Structure mapping analyses of this correspondence shows that

0
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it depends on a series of multiple system mappings. The processing loads and

therefore quite high, and that is the next subject we must consider.

Abstraction, structure mapping and processing loads

If our analysis is correct, acquisition of an abstraction entails quite

high processing loads, because it entails recognizing the correspondence structures

that exemplify that abstraction. In our example based on the distributive law, it is

necessary to see the correspondence between different instantiations of the law,

and also between one prototypical instantiation and the algebraic expression of the

law. Evidence mentioned earlier indicates that humans have limited capacity to

recognize correspondence between structures, and adults can probably only

process in parallel correspondences between four-dimensional structures,

equivalent to one quaternary operation. Children of one year can probably only

process structures based on one dimension in parallel, children of two years on

two dimensions, children of five years on three dimensions. This subject has been

discussed in detail elsewhere (Halford, in press).

Because we can recognize correspondence between structures of only

limited complexity, we have other ways of processing structures. One way, as

noted above, is to learn correspondences; i.e. we learn which component of one

structure maps into which component of another structure. Once these mappings

are learned they no longer impose a processing load. The other way is to recode

the correspondences in a more abstract form. This reduces the processing load

once the abstraction is achieved but, as we have seen, the processing loads can be
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high during acquisition because of the correspondences that must be recognized.

In order to reduce this load it is critically important that each

correspondence is learned before progressing to the next. That is, the

correspondence in Figure 7A must be learned before progressing to the one in

Figure 7B, which must be learned before progressing to the correspondence in

Figure 7C, and so on. Furthermore the learning must be such that retieval is

automatic, so that no load is Unposed. The load imposed by one structure mapping

must be reduced to zero before the next structure mapping is undertaken, otherwise

the cumulative load will become excessive.

Conceptual chunking can also be used to reduce processing loads.

What we call an abstraction is often better conceptualized as a conceptual chunk.

For example, the complex relationships in Figure 6 can be recoded as a conceptual

chunk. The chunk consists of the idea of a number, to which decomposition can be

applied, resulting in an equal number but differently configured, then subtrection is

applied yielding a new number. This is a very simple set of relationships, and in

itself it imposes quite a low processing load. It is equivalent to two successive

relational mappings. It produces great gains in processing load by constraining

more complex mappings. For example, number is mapped, or can be decomposed,

into hundreds, tens, and units. The decomposition relation between two numbers at

the abstract level constrains the operations that are performed on the hundreds,

tens, and units; if the tens are reduced by 1, the units must be incremented by 10,

and so on. The fact that the abstract concept of decomposition constrains us to

c.,
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adjust tens and units in this way can be learned, and when it is learned the

conceptual chunk greatly reduces the processing load. This reduction does not

come about automatically however, but only by learning some complex

relationships. Once acquired it produces massive gains in efficiency.

Abstraction of place-value

The multibase arithmetic blocks were designed partly to facilitate

understanding of power and place value, and therefore different bases were used.

Figure 8 shows the correspondence between base IQ and base 2 blocks. In each

case the relation between a unit and a long is an increase from the zero to the first

power. The relation between a long and a flat is an increase from the first to the

second power. The same relationship occurs in base-WTI and base-two blocks.

Notice that this correspondence is easily expressed as a structure mapping

diagram, and doing so shows that it is much simpler than the correspondence

involved in the subtraction algorithm. Recognition of correspondence between the

structure of base-ten and the structure of base-two (or other bases) is an important

component of abstraction. "Raising to the next power" is the relation that is

common to both structures, and this concept can be extracted by seeing the

correspondence between the structures. This is another illustration of the point

made earlier that analogies are useful for promoting abstractions, because they

entail selectively mapping those relations that are common to both structures.

Multiple embodiment
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One principle which Dienes (1964) has advocated is multiple

embodiment. The general idea is that the same principle is instantiated in different

materials. This helps abstraction because it leads to focusing on the common

features of the instantiations, to the exclusion of idiosyncratic features. A structure

mapping analysis can help to explain this process, and also leads to some insights

as to how it should be employed.

A technique which has been observed in schools is to replace

multibase arithmetic blocks by paddle-pop sticks. Units are represented by

individual sticks, and tens by bundles of 10 sticks bound together. A stick then

corresponds to a unit block, and a bundle of sticks to a long. In both cases the

representations are raised from the zero to the first power. A structure mapping

analysis shows that such multiple embodiments are only useful if the child sees the

correspondence between the two structures. Putting it another way, the child must

recognize the analogy. If the analogy is not recognized then the extra embodiment

is worse than useless, because it is actually a distraction. Thus play, or the use of

manipulative materials, may not achieve the desired acquisitions. Analogy theory,

particularly as applied to children (see Ha lford in press, for a review) can be used

to predict the conditions under which recognition of the analogy is most likely to

be achieved.

Structure mapping theory and pedagogy
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We have presented a number of examples designed to show how

structure mapping theory can be a useful way of analysing what needs to be

understood, the loads imposed in such understanding, and ways of reducing those

loads. Structure mapping is a conceptual tool, a major value of which is that it

draws attention to the correspondences which children must be taught to

recognize. However we cannot emphasize too strongly that this does NOT imply

that children should be taught to draw structure mapping diagrams. Structure

mapping theory is for the theorist and educator to use in analysing tasks, and its

presentation to children would only load them with useless and impossibly

burdensome information.

The correct way to use these analyses is to gain insights into the

correspondences that need to recognized, then to use an assortment of pedagogical

tools to present these correspondences to pupils. This paper is about analysing

concepts rather than about teaching methods per se, but by way of illustration we

can consider briefly how the correspondence in Figure 7A might be taught. The

idea would be to show children how to compute the number inside the

parentheses, then multiply it by the number outside the parentheses; i.e. "2 + 1 = 3,

3 x 3 = 9". Then point out that 3(2 + 1) = 9 is the same as 3 x 3 = 9. Children

would need multiple e;:ercises with this relationship, until they could retrieve it

automatically.

Correspondence between abstractions
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Structure mapping can be used to represent correspondence between

abstractions. For example recognition of correspondence between equations can

be represented as a structure mapping;its shown in Figure 11. The equation AX =

b corresponds to the equation A(X + b) = c, if (X + b) in equation 2 is mapped into

X in equation 1.

This illustrates the general point that structure mapping is not only

used to represent correspondences between concrete analogs and arithmetic. It can

be used to represent correspondences between any two isomorphic structures. The

type of structure depends on the domain. When teaching arithmetic relations,

concrete analogs are useful models. When teaching elementary algebra, previously

learned arithmetic relations are useful models. With more advanced algebra,

previously learned algebraic concepts are useful models. The appropriate in pping

is between a previously-learned model, treated as source, and the new concept,

treated as target. Thus we are proposing an inductive concept of mathematics

learning, in which previously learned concepts are used as mental models of new,

higher level concepts. This induction process depends heavily on recognition of

correspondence between the mental model and the new concept. We use structure

mapping to analyse the correspondences that are required, and to provide estimates

of their complexity.

Concrete analogs and criteria for good analogies

6
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Some insights can be obtained by assessing the structure mapping in

Figure 6 according to the criteria for a good explanatory analogy devised by

Gentner (1982). The first of these is base specificity, which corresponds to the

degree to which the structure of the base is understood. In Figure 6 this means that

the structure of the block analog must be well understood, including the size

relations between the blocks (the fact that a hundreds block is 10 times a tens

block which is 10 times a unit block). It is therefore essential that it be reduced as

much as possible. One way to do this is to ensure that all information about the

base can be retrieved without effort, so the retrieval process does not impose a

processing load.

This mapping can be prelearned, so that it does not need to be

constructed when the child has the additional load of learning the subtraction

algorithm. That is, children can learn that 3 hundreds blocks represent the quantity

300. Much practice should be given in mapping quantities to concrete analogs

before the mapping to the subtraction notation is introduced. Probably the only

way the quantity representation can be encoded is verbally, so that the verbal

quantity labels for each concrete analog would need to be learned.

Resnick and Omanson (draft 87) found that children who had facility

with the verbal quantity labels profitted more from mapping training. This is quite

consistent with the structure mapping analysis, because it would mean that the

mappings from the verbal quantity labels to the concrete analogs were well known.

This would facilitate completing the rest of the structure mapping for the
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subtraction algorithm.

The structure mapping rates quite well according to Gentner's next

criterion, clarity, which means that there are no ambiguous mappings. It also rates

well according to richness, because of the large number of mappings that are

made, and according to scope, because of many applications of the analogy.

The structure mapping rates very highly in systematicity, because the

many relations between elements at the same level d' provide a coherent overall

structure. This is both a strength and a weakness, however. The value of the

analogy lies mainly in the complex set of relationships that are represented, but

this also makes it very complex and difficult to recognize. An important point is

that children need to recognize, not only the vertical mappings between elements

at the different leveis, but also the corresponding relations between levels. That is,

it is not sufficient to know the mappings from 3 hundreds blocks to the quantity

300 and then to the 3 in the hundreds column, plus the other vertical mappings of

this type. It is necessary also to realize that, for example, the quantity conserving

change between the two block arrangements is mirrored in a quantity conserving

change between the quantities represented at the next level, and that this in turn is

mirrored in a quantity conserving change at the notation level. The training

procedure used by Resnick and Omanson might have been more successful in

teaching the vertical mappings, and might not have taught children to recognize

the corresponding relations at the different levels.
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An efficient technique for teaching the mappings shown in Figure 8.10

has been developed by Champagne and Rogalska-Saz (1984). The Dienes blocks

are represented by computer graphics, which obviates the classroom management

problems associated with blocks, and facilitates manipulation. A graded series of

lessons teaches children the mappings from blocks to notation, how to trade higher

demonination blocks for lower demonination blocks, and how this quantity

conserving trade is mirrored in the decompositiodecomposition notation.

Conclusions

We have used analogy theory and the theory of cognitive

representations to analyse some problems in mathematics education. Analogy

theory and representation theory both depend on structure mapping theory,

because both depend on mapping one structure into another. Thus structure

mapping is really the generic concept, of which analogies and representations are

specific cases.

Concrete aids that exemplify mathematical conepts are technically

analogs, and they can be analysed by specifying the structure mapping from

external analog to mental representation of the concept. This leads to some useful

insights into the reason why come analogs are likely to be more efficient than

others. Furthermore it makes it possible to analyse the processing loads that use of

such analogs can impose. Perhaps most important of all, it emphasizes that analogs

of any kind are useless unless children see the correspondence between the analog

and the concept.
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Research into structure mapping in other structures shows that

humans have limited capacity to recognize correspondence between two structures.

Adults can probably only process four-dimensional structures in parallel, and

children can process structures of less dimensionality than adults. Our research

indicates that the dimensionality of structures that children can process in parallel

increases from one at age one year, two at age two years, three at age five years,

and the adult ability to process four-dimensional structures is acquired at II years.

The wider implications of this for cognitive development are considered elsewhere

(Halford, in press). In most contexts this limitation is overcome by using

prelearned correspondences between structures, by recoding structures so they are

defined over fewer dimensions, or by segmenting problems and using a mixture of

serial and parallel processing. The limitation only affects performance where one

of these strategies cannot be used. This occurs where at least one of the structures

is new, and cannot be decomposed.

Much of mathematics learning entails acquisition of progressively

more abstract concepts. Abstraction reduces processing loads, but we propose that

abstractions are acquired by induction from examples. For this to occur, children

must be able to see the correspondence between different examples of the same

abstraction, and also between an example and the abstract rule. Unless this

correspondence is recognized the rule is not really understood. Structure mapping

can be used to analyse these correspondences. In general structure mapping is

important in acquisition of abstractions because it simulates the use of variables,

.40
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and leads to selection of attributes and relations that are common to different

examples of the same concept.

We propose that mathematics is learned by using previously acquired

concepts as mental models for later, more abstract concepts. Elementary number

concepts are probably learned using concrete external experiences with sets as

mental models. Elementary algebraic concepts are acquired by using previously-

learned number concepts based on constants as mental models. Some higher level

algebraic concepts are acquired using previously-learned algebraic concepts as

mfnital models. This progression from concrete experiences to increasingly

abstract concepts depends, at each step, on recognition of correspondences

between earlier concepts and later ones. Therefore recognition of correspondences

between structures, which we analyse in terms of structure mapping theory, is

central to mathematics learning at all levels.
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Figure captions

Figure 1. A structure mapping analysis of a simple analogy

Figure 2. Four levels of structure mapping

Figure 3. Structure mapping analysis of some concrete aids

Figure 4. Structure mapping analysis of a place-value analog

Figure 5. Stucture mapping analysis of a decomposition analog

Figure 6. Structure mapping analysis of a subtraction analog

Figure 7. Structure mapping analysis of acquisition of the distributive law

Figure 8. Correspondence between base-10 and base-2

Figure 9. Correspondence between two equations
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B (3 x 2) + (3 x 1) = 9

6 3

C 3 (2 + 1) = (3 x 2) + (3 x 1)
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Table I
Examples of concepts at each level of structure rrigQping.

Concepts that require element mappings
Simple categories (dog,house)

Concepts that require relational mappings
Concepts based on simple binary relations (more than, bigger than)
Simple oddity
Simple analogies

Concepts that require system mappings
Transitivity and ordering
Class inclusion
Multiple classification
Dimension-abstracted oddity
Systematicity in analogies
' lypothesis testing in affirmation concepts (dimension checking and more
sophisticated strategies)
Hypothesis testing in the attribute identification paradigm, with
conjunctive, disjunctive and conditional rules.
Interpretation of simple algebraic expressions containing arithmetic
operations

Concepts requiring multiple system mappings
Hypothesis testing in the attribute identification paradigm, with the
biconditional rule
Hypothesis testing in the rule identification paradigm, for all rules other
than affirmation
Interpretation of algebraic operations containing compositions of
arithmetic operations
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